步驟一:采集
大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫來進(jìn)行簡單的查詢和處理工作。在大數(shù)據(jù)的采集過程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會有成千上萬的用戶來進(jìn)行訪問和操作,所以需要在采集端部署大量數(shù)據(jù)庫才能支撐。并且如何在這些數(shù)據(jù)庫之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。
步驟二:導(dǎo)入/預(yù)處理
雖然采集端本身會有很多數(shù)據(jù)庫,但是如果要對這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫,或者分布式存儲集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡單的清洗和預(yù)處理工作。
導(dǎo)入與預(yù)處理過程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會達(dá)到百兆,甚至千兆級別。
步驟三:統(tǒng)計(jì)/分析
統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫,或者分布式計(jì)算集群來對存儲于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求。
統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對系統(tǒng)資源,特別是I/O會有極大的占用。
步驟四:挖掘
數(shù)據(jù)挖掘一般沒有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計(jì)算,從而起到預(yù)測(Predict)的效果,從而實(shí)現(xiàn)一些高級別數(shù)據(jù)分析的需求。
該過程的特點(diǎn)和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計(jì)算涉及的數(shù)據(jù)量和計(jì)算量都很大,常用數(shù)據(jù)挖掘算法都以單線程為主。
這就是大數(shù)據(jù)處理的完整過程,經(jīng)過這些過程才可以達(dá)到大數(shù)據(jù)處理的結(jié)果,給人有效的數(shù)據(jù),讓這些有效的大數(shù)據(jù)幫助企業(yè)或是公司做出更有力的決策!
上一個(gè)教程:返回列表
下一個(gè)教程:返回列表